Effect of Angiotensin II Type I Receptor Blockade on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo The EFFERVESCENT Study

Ronnie Ramadan, Ayman Khoder, Saurabh S. Dhawan, José N Binongo, Salman Sher, Hamid Syed, Asad Ghafoor, Muhammad Ali, Charles B. Kitchen, Dean P. Jones, John N. Oshinski, Arshed A. Quyyumi

> Emory Clinical Cardiovascular Research Institute Cardiology Division Emory University School of Medicine Atlanta, GA

Disclosures

The study was funded by an investigator initiated research grant from Novartis

Effect of Angiotensin II Type I Receptor Blockade on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo

www.clinicaltrials.gov Identifier: NCT00208767

Background

- Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis
 - Oxidative stress
 - Inflammation
 - Thrombosis
 - Endothelial Function
- Angiotensin II AT-1 receptor blockade improves cardiovascular outcomes
 - Hypertension
 - Heart Failure
 - Myocardial Infarction

Nickenig G. Circulation. 2002; 105:393-396 Schieffer B. Circulation. 2000; 101:1372-1378 Prasad A. Circulation. 2000; 101:2349-2354 Pfeffer MA. NEJM. 2003; 349:1893-1906

Hypothesis

Primary

 Valsartan will reduce progression of carotid bulb wall thickness and inhibit atherosclerotic plaque progression.

Secondary

 The effects of Valsartan on carotid disease will be mediated by improvements in oxidative stress, inflammation, and vascular function.

Study Design

- Single center, double-blind, placebo-controlled randomization of 120 subjects aged 21-80 years
- Carotid IMT >0.65 mm measured by ultrasound
- 2:1 randomization Valsartan (n=80) vs. placebo (n=40). Valsartan dose titrated to 320 mg/day
- Stratified by statin use
- 24 months treatment period

Exclusion Criteria

- Premenopausal females with potential for pregnancy
- ACEi or ARB therapy in the previous 3 months
- Initiation or change in dose of statin therapy within 2 months
- Anticipated change in lipid lowering therapy
- LDL >160 mg/dl or >130 mg/dl in the presence of atherosclerotic plaque during screening carotid ultrasound and not receiving statin therapy

- Acute coronary or cerebrovascular event within 2 months
- Serum creatinine > 2.5 mg/dL
- HbA1c >8.5
- SBP>140 or DBP>90 mmHg
- Inability to give informed consent
- Current neoplasm
- Inability to undergo MRI

Study Protocol

3 Months

- History and Physical Exam
- CBC, Chemistry, and Lipid profile
- Oxidative Stress Markers
- Inflammatory Markers
- Vascular Function

24 Months

- History and Physical Exam
- CBC, Chemistry, and Lipid profile
- Oxidative Stress Markers
- Inflammatory Markers
- Vascular Function
- Carotid MRI

Initial Visit

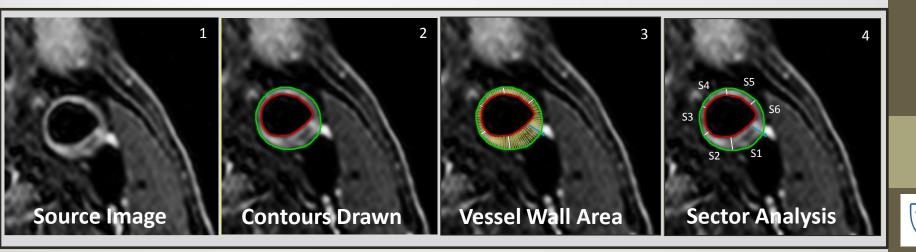
- History and Physical Exam
- CBC, Chemistry, and Lipid profile
- Oxidative Stress Markers
- Inflammatory Markers
- Vascular Function
- Carotid MRI

2 Weeks

- History and Physical Exam
- CBC, Chemistry, and Lipid profile
- Oxidative Stress Markers
- Inflammatory Markers
- Vascular Function
- Dose Titration

12 Months

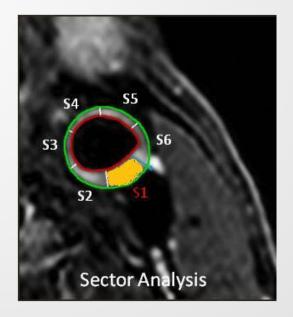
᠕


- History and Physical Exam
- CBC, Chemistry, and Lipid profile
- Oxidative Stress Markers
- Inflammatory Markers
- Vascular Function
- Carotid MRI

Methods: Carotid MRI

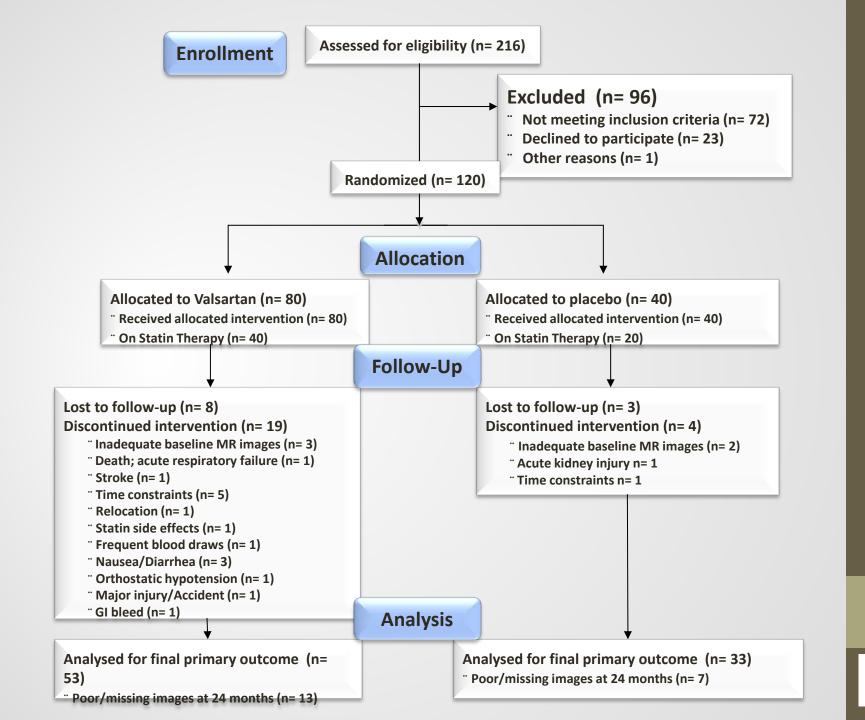
- 1.5 or 3T MRI system
- T2-weighted, black-blood, turbo spine echo (TSE) sequence
- 3 mm slice thickness, 0.3 mm x 0.3 mm spatial resolution

Analysis


- Dedicated vessel analysis package (VesselMASS, LUMC, Leiden, Netherlands)
- Outer and inner vessel contours traced by single blinded investigator <u>Software Calculated Measures</u>
 - Lumen area
 - Vessel wall area = total vascular area lumen area
 - Mean wall thickness
 - Maximum wall thickness
 - Each cross sectional MRI slice divided into 6 sectors with the mean wall thickness calculated for each sector

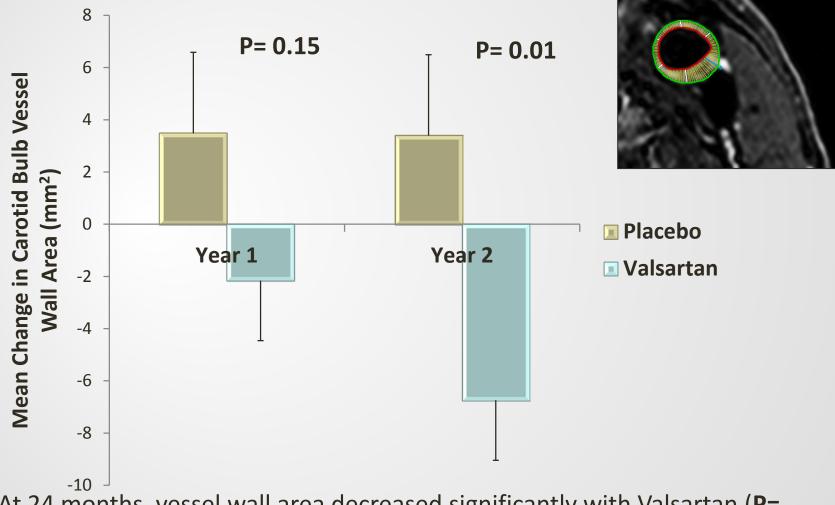
Plaque Definition

Plaque: Maximum chord > 2 mm



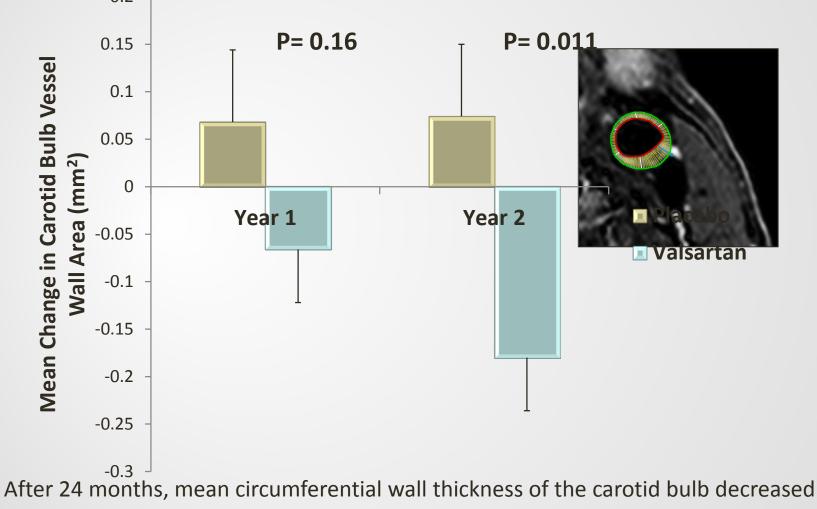
Statistical Methods

- Comparison between treatment groups was by linear mixed models that take into account correlations between repeated measurements on the same subjects.
 - Model-based means are unbiased with unbalanced and incomplete data
 - Dropouts assumed to be independent of the unobserved measurements
 - Compound symmetry was assumed

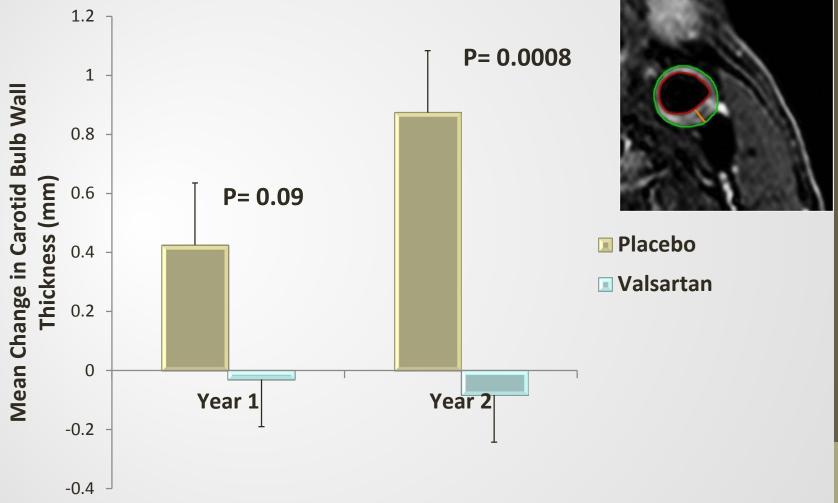


Patients' Characteristics

Characteristics	١	Valsartan	Placebo			Change between Groups	
	Baseline	24	Р	Baseline	24	Р	Р
		Months	value		Months	value	Value
Blood Pressure (mean ± SD)							
Systolic blood pressure (mmHg)	122 ± 13	114 ± 20	0.011	129 ± 16	124 ± 15	0.14	0.56
Diastolic blood pressure (mmHg)	74 ± 10	69 ± 8	0.003	76 ± 12	72 ± 12	0.043	0.78
Fasting Lipid Profile (mean ± SD)							
All Patients							
Total cholesterol (mg/dL)	180 ± 31	173 ± 34	0.11	172 ± 28	175 ± 33	0.42	0.10
Triglycerides (mg/dL)	119 ± 61	120 ± 72	0.87	108 ± 67	106 ± 55	0.83	0.79
High density lipoprotein (mg/dL)	50 ± 16	55 ± 18	<0.001	56 ± 14	62 ± 15	0.005	0.39
Low density lipoprotein (mg/dL)	104 ± 26	94 ± 28	0.01	93 ± 25	91 ± 27	0.68	0.11
Statin Group							
Total cholesterol (mg/dL)	170 ± 33	161 ± 30	0.13	167 ± 33	166 ± 35	0.92	0.31
Triglycerides (mg/dL)	111 ± 64	120 ± 71	0.34	118 ± 77	114 ± 51	0.77	0.40
High density lipoprotein (mg/dL)	48 ± 14	52 ± 16	0.008	58 ± 14	61 ± 15	0.25	0.76
Low density lipoprotein (mg/dL)	97 ± 29	85 ± 26	0.037	85 ± 25	83 ± 27	0.59	0.23
No Statin Group							
Total cholesterol (mg/dL)	193 ± 24	191 ± 32	0.61	179 ± 20	188 ± 26	0.12	0.13
Triglycerides (mg/dL)	130 ± 57	120 ± 74	0.37	94 ± 49	94 ± 61	0.95	0.52
High density lipoprotein (mg/dL)	53 ± 19	58 ± 21	0.006	54 ± 14	65 ± 15	0.004	0.10
Low density lipoprotein (mg/dL)	114 ± 16	108 ± 25	0.13	103 ± 21	104 ± 22	0.93	0.27
Biomarkers (mean ± SD)							
Potassium (mmol/L)	4.3 ± 0.3	4.4 ± 0.3	0.045	4.5 ± 0.4	4.4 ±0.3	0.45	0.07
Creatinine (mg/dL)	0.98 ± 0.17	0.92 ± 0.27	0.054		1.4 ± 0.5		0.46
	0.50 ± 0.17	0.52 - 0.27	0.054	0.00 -0.2		LG 0.51	0110

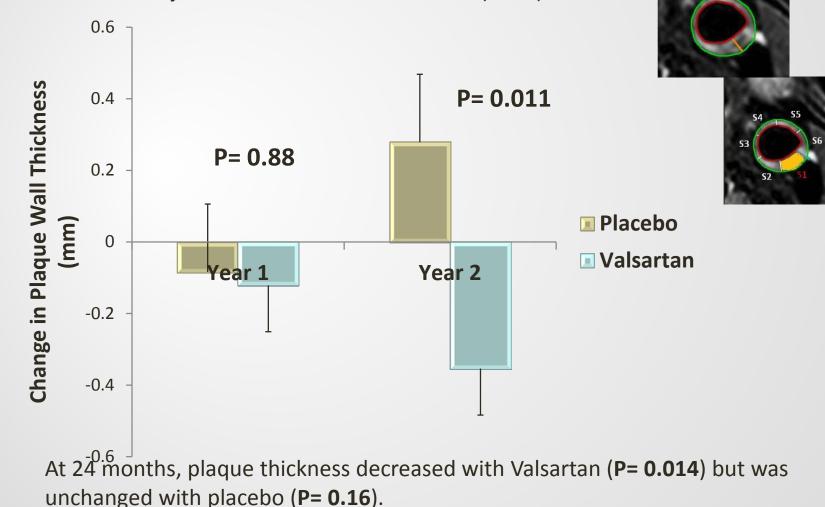

Effect of Valsartan on Carotid Bulb Vessel Wall Area

At 24 months, vessel wall area decreased significantly with Valsartan (P= 0.008) compared to an insignificant change with placebo (P= 0.28)


Effect of Valsartan on Carotid Bulb Vessel Wall Thickness

with Valsartan (P= 0.0035) compared to an insignificant change with placebo (P= 0.34)

Effect of Valsartan on Carotid Bulb <u>Maximum Wall Thickness</u>



After 24 months, maximum wall thickness of the carotid bulb increased with placebo (**P= 0.001**) compared to an insignificant change with Valsartan (**P= 0.61**)

Effect of Valsartan on Carotid Bulb <u>Plaque Thickness</u>

Atherosclerotic plaque, defined as mean WT of maximum sector in subjects with maximum WT >2mm (n=86).

Summary of Findings

In subjects with abnormal CIMT, there was:

- Significantly greater reduction in carotid bulb wall thickness and plaque thickness with Valsartan compared to placebo
- No significant change in the mean vessel lumen area in either group
- Effects of Valsartan were unaffected by statin use
- No correlations between the magnitude of change in carotid wall dimensions and changes in either <u>blood</u> <u>pressure</u> or <u>lipid levels</u>

Effect of Valsartan on Biomarkers and Vascular Function

					Change		
Characteristics	Valsartan				between		
						Groups	
	Baseline	24 Months	P value	Baseline	24 Months	P value	P Value
Oxidative Stress							
Cysteine (µM)	9.3 ± 2.5	9.2 ± 4.0	0.87	9.2 ± 2.3	8.9 ± 2.5	0.71	0.91
Cystine (µM)	85.9 ± 19.6	93.6 ± 21.5	0.016	82.1 ± 11.3	92.1 ± 20.1	0.023	0.64
Glutathione (µM)	1.3 ± 0.6	1.5 ± 0.6	0.069	1.31 ± 0.52	1.65 ± 0.61	0.018	0.39
Glutathione Disulfide (µM)	0.03 ± 0.02	0.06 ± 0.05	< 0.001	0.03 ± 0.02	0.06 ± 0.04	0.023	0.42
Cysteine-glutathione disulfide (μ M)	2.4 ± 0.8	3.1 ± 1.2	0.001	2.28 ± 0.91	4.04 ± 2.06	<0.001	0.007
Inflammation							
C-reactive protein (mg/L)	3.5 ± 6.1	2.9 ± 3.4	0.47	2.26 ± 2.59	2.32 ± 2.65	0.91	0.55
Fibrinogen (g/L)	2.5 ± 0.8	2.7 ± 0.8	0.32	2.23 ± 0.48	2.54 ± 0.53	0.007	0.35
Vascular Function							
Flow-mediated dilation (%)	5.5 ± 3.9	6.0 ± 3.6	0.43	5.0 ± 3.8	5.0 ± 3.5	0.99	0.64
Nitroglycerin-mediated dilation (%)	19.2 ± 5.0	22.4 ± 7.3	0.004	19.9 ± 7.3	21.4 ± 7.7	0.48	0.49

Effect of Valsartan on Biomarkers and Vascular Function

 There was improvement in oxidative stress (Cysteine-glutathione disulfide) with Valsartan.

 There were trends to improvement in fibrinogen levels and endothelium-independent function with Valsartan.

Conclusions

- Long term blockade of AT_1R with Valsartan resulted in significant reverse remodeling of the carotid arteries, manifested as regression in carotid wall thickness and carotid plaque without significant changes in lumen size.
- These effects of Valsartan were independent of changes in lipid levels, statin, or blood pressure.
- Valsartan therapy was associated with lower oxidative stress, reduced fibrinogen levels, and improved endothelium-independent vascular function.

Implications

- In subjects with carotid wall thickening and mild subclinical atherosclerosis, AT₁R antagonists impede progression of disease.
- These effects may translate to long-term reduction in cardiovascular events in individuals with subclinical atherosclerosis.
- Outcome studies in this relatively low risk population may be warranted.

Effervescent Investigators

Principal Investigator

• Arshed A. Quyyumi, MD

Cardiology Fellows

- Ronnie Ramadan, MD
- Saurabh Dhawan, MD

Imaging

- John N. Oshinski, PhD
- Ayman Khoder, MD
- Charles B. Kitchen

Oxidative Stress Lab

• Dean P. Jones, PhD

Biostatistics

• Jose Nilo G. Binongo, PhD

Study coordinators

- Hamid Syed, MD
- Asad Ghafoor, MD
- Muhammad Ali, MD
- Christina Neissner, MD

Effect of Angiotensin II Type I Receptor Blockade on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo

Cardiology Fellows: Ronnie Ramadan, Saurabh S. Dhawan,

Vascular testing: Salman Sher,

Coordinators: Christina Neissner Hamid Syed, Asad Ghafoor, Muhammad Ali,

Biostatistics: José N Binongo,

Biomarkers: Dean P. Jones

MRI: John N. Oshinski, Charles B. Kitchen, Ayman Khoder,

Principal Investigator: Arshed A. Quyyumi

